
Jacob Jose1, Kanav Sharma2, Nihal Singh3, Venkata Kanaka4, Krishna Pandya5, Jay Patel6

Software Engineering, Arizona State University, Tempe, Arizona

{jjose14,ksharm53,nnolas27,vgudimet,kpandya5,jpatel89}@asu.edu

Abstract

An analysis and comparison of two distinct platforms used for development of autonomous rovers which can

traverse the given maze and send feedback to the operator. Rover development being the niche area, have very few

resources to refer and a new user/future users spends a lot of time in environment setup, system configuration,

validating tools compatibility. Limitations of sticking to specific versions of dependencies and constant reducing

support for non LTS versions, make development even difficult. This paper. Nevertheless, very little is explored

about the use and suitability of specific platforms for rover development. We fill this gap as we have already

explored two different platforms and will detail out practice, comparison, perceived benefits, and related tools

used.

Keywords: Unity, ROS, Linux, Gazebo, CLI, GUI, Automation Scripts, RViz, SLAM

Introduction

The Robot Operating System 2 (ROS) is a set of software libraries and tools that help us build robot applications.

With a set of algorithms and powerful developer tools, this open-source software can be implemented through

different modes and platforms. As the saying goes, a good start is half the battle won. Similarly choosing the

correct platform and deciding initial strategy is the key in rover development and robotics. Therefore, selecting

tools should be handled with a deeper understanding about the differences between the same. If properly

analyzed and brainstormed, those steps can be automated and can be used to improve the next generation of

users. In this paper, we focused on two such approaches for rover development

● Unity 3D with ROS2

● Ubuntu (Linux) with ROS2

Related Work

https://github.com/Unity-Technologies/Robotics-Nav2-SLAM-Example

Above reference is for exploration of an environment generated with the Robotics Warehouse randomizable

environment.

PROS:

● Everything is manually set up which gives a detailed overview for every step.

● Detailed explanation of visualization and exhaustive documentation.

https://github.com/Unity-Technologies/Robotics-Nav2-SLAM-Example


CONS:

● Longer time to set up the environment.

● Many issues for a perfect flow (No Detailed explanation of integration of individual components).

● Inability of customization of rover as per user requirements.

Our Solution

Our solution focuses on omitting the time-consuming part of setup of environment for rover development,

providing flexibility to choose desired configurations of the rover and environment & providing one stop shop for

detailed documentation of how to make rover up and running. This helps users get ready with feature

developments in a few clicks. We achieved it via three below enhancements:

● Automation scripts: With implementation of syntactic sugar by creating automation scripts we were able

to greatly reduce time needed for environment setup, downloading all required dependencies, managing

LTS versions and ability to update dependencies with few changes. Setting up ROS2 on windows required

~20 different dependencies as below which was cumbersome for users and diverted from the actual goal

of rover development.

o Python

o Visual C++ Redistributable

o OpenSSL

o Visual Studio

o OpenCV

o CMake

▪ asio.1.12.1.nupkg

▪ bullet.2.89.0.nupkg

▪ cunit.2.1.3.nupkg

▪ eigen-3.3.4.nupkg

▪ tinyxml-usestl.2.6.2.nupkg

▪ tinyxml2.6.0.0.nupkg

▪ log4cxx.0.10.0.nupkg

o Qt5

o ROS2

o Gazebo 

With Automation script in place, all above dependencies are installed and configured within a few clicks.



● Command Line Interface and User Interface: Having the environment setup complete using automation

scripts, next we ensured users have flexibility to choose rover environment (Maze, terrain) and rover

specification (Color, Size and number of rover wheels and body) of his/her choice. Having CLI and GUI will

further help users to bypass configurations and focus on business needs of the rover. We implemented

factory & bridge design patterns in JAVA, which helps avoiding multiple config files for each modification

and have optimized implementation.

● Configuring Environment:



● Customizing Rover Specifications:

● Exhaustive documentation:

https://github.com/ksharm53/SER515-Spring22-Team12#readme

The README section of GitHub repository acts as a one stop shop for all details required for downloading, building,

and executing scripts, command line interface and user interface. Along with setup, README file acts as a library

for each component used in the rover development, contributors and LTS versions to be used.

● Unity Independent Maze and Terrain generation scripts:

Team emphasized on creating components which are independent of any version of Unity used. Although

automation scripts and CLI does allow downloading LTS Unity 3D, creating C# scripts helps importing the same to

another platform (Ubuntu) as well.

Comparison Table

Evaluation Criteria Linux Unity 3D

Installation ● Installation of Unix / virtual box
● Installation of ROS2
● Installation of Gazebo
● Running the python scripts written

by the developer and executing the

ezRos to view all the scripts and the

configuration of the project

● Automation script for the installation of

Unity3D editor and ROS 2 environment

completely configured.

● By running the docker container the

connection between ROS2 and unity editor

will be established

● Operator receives the feedback from the

rover mapping the maze

● Laser Scan sensor is being visualized to map

the rover

● User Interface and Command Line Interface

for modification of rover

https://github.com/ksharm53/SER515-Spring22-Team12#readme


Ease of Use ● Command Line Interface (CLI) for

rover customization.

● Installation setup test scripts.

● Command Line Interface (CLI) for rover

customization.

● UI for rover customization.

● Extensive documentation.

● Unity independent C# scripts. (Maze, terrain,

wheel, and bodies)

● Automation scripts.

Documentation ● Limited documentation available. ● Exhaustive Documentation (Taiga and

GitHub) which could also work as a user

manual.

Automation Script ● Install the packages locally. ● Set up the environment completely.

Possible Configurations ● Software allows simulating the

rover without a laser and/or camera

sensor.

● Dynamic maze generation. Maze

can be saved.

● Three different sizes and numbers for the

rover's wheels.

● Rover body and maze color customization .

● Dynamic maze generation.

System Visual Performance ● Maze generated is not as real-world

as in Unity 3D.

● Inputs more responsive than

Unity3D due to Gazebo's lesser GPU

requirement.

● A real world environment can be rendered in

Unity3D and the rover can map the room

using SLAM.

● Unity 3D's high GPU requirement slightly

affects system performance.

Host OS ● Project supports Ubuntu OS using

Python.

● Project uses Linux Shell Script.

● Project supports Windows OS in Windows

PowerShell.

● Project uses Windows Shell Script.

Rover Configuration

Specification File

● Rover customization using Spatial

Data File(SDF).

● Rover customization using Unified Robotics

Description Format(URDF).

Rover Movement

Visualization

● Uses ROS2, SLAM, RViz ● Uses ROS2, SLAM, RViz, Laser Scan.

Say Do Ratio

(Agile metrics)

● 30:29 ● 17:13

Project Compatibility with

changing environment ● As the project is based on Ubuntu,

the scripts for rover configurations

like wheels, sensors and the maze

are compatible with any stable

version of ubuntu like ubuntu 18.04

● The project uses python 3 script for

CLI prompts to perform rover

configuration, and hence python 3

is necessary

● The project is compatible with any version of

Unity.

● Unity independent maze generation

capabilities

● Unity independent Terrain, rover body and

rover wheels

● Easing out the future users’ tasks by

providing them with the ability to customize

the environment through CLI



Major Drawbacks faced ● Very limited online resources
available for ROS2 compared to
ROS1,hindering integration process

● Even number of wheels

● Connection of ROS2 and unity editor

● ROS TCP connection

● Generating and Validating URDF files

Result

In 6 sprints, the team was able to deliver a working rover with multiple ease of use features for future rover

developers. Below are the capabilities our rover has post sprint 5

o Unity Independent Maze and terrain.

o Rover body and wheels with jump capabilities.

o Manual movement of the rover across a given maze.

o Autonomous movement of the rover across maze.

o Automation scripts for environment setup.

o CLI and GUI for environment and rover customization.

o Detailed documentation for rover setup, build & implement.

Future Work

1. Functionality to add different sensors.

2. Ability to get feedback from multi rovers with cross rover communication.

3. Integrating with IOT.

4. Mobile application support.


